The Evolution of Microtubule End-Binding Protein 1 (EB1) and Roles in Regulating Microtubule Behavior
نویسندگان
چکیده
All organisms must transmit genetic information to offspring through cell division, and mitotic spindle participates in the process. Spindle dynamics through depolymerization or polymerization of microtubules generates the driving force required for chromosome movements in mitosis. To date, studies have shown that microtubule arrays control the directions of cell division and diverse microtubule-associated proteins regulate cell division. But a clear picture of how microtubules and microtubule-associated proteins modulate cell division remains unknown. Depletion of end-binding protein 1 by RNA-mediated inhibition shows that one of the microtubule-associated proteins, end-binding protein 1, plays a crucial role in mitotic spindle formation and promotes microtubule dynamics and is needed for the proper segregation of mitotic chromosomes during anaphase in Drosophila cells. Here, we review the properties of end-binding protein 1 and the roles of end-binding protein 1 in regulating microtubule behavior and in cell cycle.
منابع مشابه
Phosphorylation of EB1 regulates the recruitment of CLIP-170 and p150glued to the plus ends of astral microtubules
Phosphorylation of end-binding protein 1 (EB1), a key member of microtubule plus end-tracking proteins (+TIPs), by apoptosis signal-regulating kinase 1 (ASK1) has been demonstrated to promote the stability of astral microtubules during mitosis by stimulating the binding of EB1 to microtubule plus ends. However, the roles of other members of the +TIPs family in ASK1/EB1-mediated regulation of as...
متن کاملAn unconventional interaction between Dis1/TOG and Mal3/EB1 in fission yeast promotes the fidelity of chromosome segregation
Dynamic microtubule plus-ends interact with various intracellular target regions such as the cell cortex and the kinetochore. Two conserved families of microtubule plus-end-tracking proteins, the XMAP215, ch-TOG or CKAP5 family and the end-binding 1 (EB1, also known as MAPRE1) family, play pivotal roles in regulating microtubule dynamics. Here, we study the functional interplay between fission ...
متن کاملCLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex
CLIP-associating protein (CLASP) 1 and CLASP2 are mammalian microtubule (MT) plus-end binding proteins, which associate with CLIP-170 and CLIP-115. Using RNA interference in HeLa cells, we show that the two CLASPs play redundant roles in regulating the density, length distribution and stability of interphase MTs. In HeLa cells, both CLASPs concentrate on the distal MT ends in a narrow region at...
متن کاملEB1 targets to kinetochores with attached, polymerizing microtubules.
Microtubule polymerization dynamics at kinetochores is coupled to chromosome movements, but its regulation there is poorly understood. The plus end tracking protein EB1 is required both for regulating microtubule dynamics and for maintaining a euploid genome. To address the role of EB1 in aneuploidy, we visualized its targeting in mitotic PtK1 cells. Fluorescent EB1, which localized to polymeri...
متن کاملMammalian end binding proteins control persistent microtubule growth
End binding proteins (EBs) are highly conserved core components of microtubule plus-end tracking protein networks. Here we investigated the roles of the three mammalian EBs in controlling microtubule dynamics and analyzed the domains involved. Protein depletion and rescue experiments showed that EB1 and EB3, but not EB2, promote persistent microtubule growth by suppressing catastrophes. Further...
متن کامل